An embedded microchannel in a MEMS plate resonator for ultrasensitive mass sensing in liquid.
نویسندگان
چکیده
A mass sensor innovative concept is presented here, based on a hollow plate Micro Electro Mechanical System (MEMS) resonator. This approach consists in running a solution through an embedded microchannel, while the plate resonator is actuated according to a Lamé-mode by electrostatic coupling in dry environment. The experimental results have shown a clear relationship between the measured shift of the resonance frequency and the sample solution density. Additionally, depending on the channel design and the solution properties, the quality factor (Q-factor) was noticed maintaining its level and even substantial improvement in particular cases. Resonators demonstrate resonance frequencies close to 78 MHz and Q-factor of a few thousands for liquid phase detection operating at ambient temperature and atmospheric pressure. Frequency fluctuations study revealed a 13 Hz instability level, equivalent to 1.5 fg in mass. Using a fully electronic readout configuration, a mass responsivity of ca. 850 fg kHz(-1) was monitored.
منابع مشابه
Suspended microchannel resonators for biomolecular detection
We have demonstrated a new approach for detecting biomolecular mass in the aqueous environment. Known as the suspended microchannel resonator (SMR), target molecules flow through a suspended microchannel and are captured by receptor molecules attached to the interior channel walls [1]. As with other resonant mass sensors, the SMR detects the amount of captured target molecules via the change in...
متن کاملDynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory
In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation...
متن کاملStudy Of Thermoelastic Damping in an Electrostatically Deflected Circular Micro-Plate Using Hyperbolic Heat Conduction Model
Thermoelastic damping (TED) in a circular micro-plate resonator subjected to an electrostatic pressure is studied. The coupled thermo-elastic equations of a capacitive circular micro plate are derived considering hyperbolic heat conduction model and solved by applying Galerkin discretization method. Applying complex-frequency approach to the coupled thermo-elastic equations, TED is obtained for...
متن کاملSensing liquid density using resonant flexural plate wave devices with sol-gel PZT thin films
This study presents the design, fabrication and possible applications in liquid density sensing and biosensing of a flexure plate wave (FPW) resonator using sol-gel-derived lead zirconate titanate (PZT) thin films. The resonator has a two-port structure with a reflecting grating on a composite membrane of PZT and SiNx. The design of the reflecting grating is derived from a SAW resonator model u...
متن کاملEfficient and sensitive capacitive readout of nanomechanical resonator arrays.
Here we describe all-electronic broadband motion detection in radio frequency nanomechanical resonators. Our technique relies upon the measurement of small motional capacitance changes using an LC impedance transformation network. We first demonstrate the technique on a single doubly clamped beam resonator with a side gate over a wide range of temperatures from 20 mK to 300 K. We then apply the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 11 15 شماره
صفحات -
تاریخ انتشار 2011